TAIDOB COLLEGE

PRE-WASSCE PREPARATORY ASSESSMENT

MATHEMATICS

PART I

Answer all the five questions in this part.
1a. If $123_{\mathrm{n}}=83_{10}$, obtain an equation in n and hence, find the value of n using a method of completing the square.
b. Simplify: $\frac{1 \frac{1}{4}+\frac{7}{9}}{1 \frac{4}{9}+2 \frac{2}{3} \times \frac{9}{64}}$

2a. Without using tables, find the value of

$$
\log _{10}\left(\frac{75}{16}\right)-2 \log _{10}\left(\frac{5}{9}\right)+\log _{10}\left(\frac{160}{243}\right)
$$

b. The formula $\mathrm{A}=\mathrm{P}\left(1+\frac{r}{100}\right)^{\mathrm{n}}$ gives the total money A , which a principal P amounts to in n years at $\mathrm{r} \%$ compound interest. Use this formula to find the interest due to a trader who invests $\# 5000.00$ for 4 years at 6% compound interest calculated annually.
3. B is the foot of the tower $A B$ standing on a horizontal plane and BCD is a straight line on the plane. The angles of elevation of A from D and C are 30° and 60° respectively. If $/ \mathrm{CD} /=100$ metres, with the aid of a diagram, calculate the height of the tower, correct to
the nearest metre.

4a. Express $\sqrt{32}+\frac{6}{\sqrt{2}}$ as a single surd and hence, find the value of: $\frac{7}{\sqrt{2}}\left(\sqrt{32}+\frac{6}{\sqrt{2}}\right)$
b. Find the equation of a straight line perpendicular to $3 x-4 y+1=0$ and passing through the point $(-2,5)$.

5a. Using crammer's rule, solve $-2 x+y=3$

$$
-x+4 y=1
$$

b. A figure is made of a cone resting on a hemisphere, they are joined by their circular bases and their diameters are equal to 21 cm as shown in figure 1 below. If the total height of the figure is 24.5 cm , calculate, correct to 3 significant figures, the volume of the figure.

Fig. 1

PART II

Answer five questions only from this part.
6. Use a ruler and a pair of compasses;
a. Construct a triangle $P Q R$ such that $/ Q R /=8.5 \mathrm{~cm}$, $\angle \mathrm{PQR}=60^{\circ}$ and $\angle \mathrm{PRQ}=45^{\circ}$.
b. Construct:
i. the locus l_{1} of points equidistant from Q and R.
ii. the locus l_{2} of points 4 cm from P .
c. Find the points of intersection N_{1} and N_{2} of l_{1} and l_{2} and measure $/ N_{1} N_{2} /$.

7a. Make a table of the function $y=x^{2}-4 x$ for integral values for $-2<x<6$. Using the scale of 1 cm to 1 unit on both axes, draw the graph of the function for real values of x.
b. Using the same scale, draw the graph of $y=1-\frac{1}{2} x$.
c. Use your graph to solve the equations:
i. $\quad x(x-4)=-2$;
ii. $\quad x(x-4)=1-1 / 2 x$.

8a. Given that $\mathrm{A}=\left(\begin{array}{cc}-2 & 1 \\ 3 & 4\end{array}\right), \mathrm{B}=\left(\begin{array}{cc}w & y \\ x & z\end{array}\right)$ and $\mathrm{AB}=\mathrm{I}$ where I is a 2×2 unit matrix, find the matrix B.
b. The third and fifth terms of an Arithmetic Progression (A.P.) are 13 and 23 respectively, find the:
i. common difference;
ii. first term;
iii. nth term of the Arithmetic Progression.

9a. A plane flies due East from $\mathrm{A}\left(50^{\circ} \mathrm{N}, 25^{\circ} \mathrm{E}\right)$ to a point $B\left(50^{\circ} N, 85^{\circ} \mathrm{E}\right)$ at an average speed of $400 \mathrm{~km} / \mathrm{h}$. The plane then flies south from B to a point C, 2000 km away. Calculate, correct to the nearest whole number, the:
b. distance between A and B;
c. time the plane takes to reach point B;
d. latitude of C.
(Take $\pi=\frac{22}{7}$ and the radius of the earth to be 6400 km)

10a. In a given points $A(3,4), B(2,4)$ and $C(-1,2)$,
i. prove that the points A, B and C form a rightangled triangle;
ii. find the length of the hypothenuse of triangle ABC;
iii. find the area of the triangle $A B C$.
b. Find the first and second derivatives of the following:
i. $\quad 3 x^{5}+6 x$;
ii. $\quad 2 \sin (3 x+1)$
11. An aeroplane flew from city G to city H on a bearing of 150°. The distance between G and H is 300 km . The aeroplane then flew a distance of 450 km to city J on a bearing of 060°. Calculate, correct to a reasonable degree of accuracy,
a. the distance from G to J ;
b. how far North of H is J ?
c. how far west of H is G ?
12. The table shows the scores of 100 students in a Mathematics test.

Marks	$\begin{aligned} & 1 \\ & 10 \end{aligned}$	$\begin{aligned} & 11- \\ & 20 \end{aligned}$	$\begin{aligned} & 21- \\ & 30 \end{aligned}$	$\begin{aligned} & 31- \\ & 40 \end{aligned}$	$\begin{array}{\|l\|} \hline 41 \\ 50 \end{array}$	$\begin{array}{\|l\|} \hline 51- \\ 60 \end{array}$	$\begin{aligned} & 61- \\ & 70 \end{aligned}$	71	$\begin{aligned} & 81- \\ & 90 \end{aligned}$	$\begin{aligned} & 91- \\ & 100 \end{aligned}$
No of student	2	4	9	13	18	32	13	5	3	

a. Draw a cumulative frequency distribution table;
b. Draw a cumulative frequency curve for the distribution.
c. Use your curve to estimate:
i. the median;
ii. the lower quartile;
iii. the $60^{\text {th }}$ percentile.

13a. If a section of a circle of diameter 14 cm subtends an angle 90° at the centre of the circle is cut off and the left over is folded without overlap to form the curved surface of a cone, find the:
(i) base radius;
(ii) height;
(iii) volume of the cone (Take $\pi=22 / 7$)
b.

Fig. 1

In figure 1, ABCDE is a circle centre O . If $/ \mathrm{EC} /$ is a diameter and $\angle \mathrm{ABC}=127^{\circ}$, calculate $\angle \mathrm{ACE}$.

